Rabu, 26 Oktober 2011

Karbohidrat Dan Vitamin

TUGAS BIOKKIMIA
“Karbohidrat & Vitamin”
Oleh:
Moh. Mirza Nuryady
101810401048
Biologi – FMIPA
Universitas Jember
2011
1. Karbohidrat
Pengertian Karbohidrat
Karbohidrat adalah senyawa organik terdiri dari unsur karbon, hidrogen, dan oksigen. contoh; glukosa C6H12O6, sukrosa C12H22O11, sellulosa (C6H10O5)n. Rumus umum karbohidrat Cn(H2O)m.
Karena komposisi yang demikian, senyawa ini pernah disangka sebagai hidrat karbon, tetapi sejak 1880, senyawa tersebut bukan hidrat dari karbon. Nama lain dari karbohidrat adalah sakarida, berasal dari bahasa Arab "sakkar" artinya gula. Karbohidrat sederhana mempunyai rasa manis sehingga dikaitkan dengan gula. Melihat struktur molekulnya, karbohidrat lebih tepat didefinisikan sebagai suatu polihidroksialdehid atau polihidroksiketon. Contoh glukosa; adalah suatu polihidroksi aldehid karena mempunyai satu gugus aldehid da 5 gugus hidroksil (OH).
Fungsi primer dari karbohidrat adalah sebagai cadangan energi jangka pendek (gula merupakan sumber energi). Fungsi sekunder dari karbohidrat adalah sebagai cadangan energi jangka menengah (pati untuk tumbuhan dan glikogen untuk hewan dan manusia). Fungsi lainnya adalah sebagai komponen struktural sel.
Metabolisme dan Jalur Metabolisme Karbohidrat
1.GLIKOLISIS : glukosa dimetabolisme menjadi piruvat (aerob)menghasilkan energi (8ATP)atau laktat (anerob)menghasilkan (2 ATP).
selanjutnya Asetil-KoA > siklus Krebs > fosforilasi oksidatif > rantai respirasi > CO2 + H2O (30 ATP)
2. GLIKOGENESIS :proses perubahan glukosa menjadi glikogen. Di Hepar : untuk mempertahankan kadar gula darah, sedangkan di Otot : kepentingan otot sendiri.
3. GLIKOGENOLISIS : proses perubahan glikogen menjadi glukosa.
4. JALUR PENTOSA FOSFAT : hasil ribosa untuk sintesis nukleotida, asam nukleat dan equivalent pereduksi (NADPH) (biosintesis asam lemak dll.)
5. GLUKONEOGENESIS : senyawa non-karbohidrat (piruvat, asam laktat, gliserol, asam amino glukogenik) > glukosa
6. TRIOSA FOSFAT : bagian gliseol dari TAG (lemak)
7. PIRUVAT & SENYAWA ANTARA SIKLUS KREBS : untuk sintesis asam amino > Asetil-KoA > untuk sintesis asam lemak & kolesterol > steroid
Glikolisis
Baik dalam keadaan anaerob maupun aerob, glukosa diubah menjadi privat melalaui serangkaian reaki glikolisis. Dalam keadaan anaerob piuvat dikonversi menjadi asam lakta atau alkohol sedangkan dalam keadaan aerob piravat dikonversi menjadi asetil KoA yang kemudian masuk dalam jalur asam trikarboksilat.
Sedangkan serangkaian reaksi yang terjadi berurutan dalam jalur EMP untuk mengkonversi glukosa menjadi asam privat yang secara garis besar dapat dikelompokkan dalam dua tahap, yaitu tahap perubahan glukosa menjadi triosa fosfat (yang memerlukan energi kemia) dan tahap perubahan triofo fosfat menjadi asam privat sambil melepaskan energi kimia ke lingkungannya.
a. Isomerasi Glukosa 6-Fosfat
Reaksi berikutnya adalah reaksi isomerasasi glukosa menjadi frutkosa 6-faosfat. Reaksi ini dan sebaliknya dikatalisis enzim fosfo glukoisomerase (∆G = + 1400 kalori, pH 7) Kkstb = 0,5.
b. Fosforealasi Frutkosa -6-Fosfat Menjadi Frutkosa 1,6 Difosfat
Pada reaksi tahap ketiga ini dikatalisis oleh fosfo-fruktosakinase.
Tahap ini merupakan tahap reaksi penting untuk pengendalian metabolisme karena enzim ini adalah enzim allosterik yang dapat dipengaruhi oleh beberapa metabolit umum. Kelebihan ATP ataupun asam sitrat dapat menghambat enzim fosfofruktokinase ini. Sebaliknya AMP, ADP, dan Fruktosa 6-P dapat menstimulasi enzim. Enzim ini memerlukan ion Mg2+ sebagai kfaktor dan memiliki berat molekul yang sangat tinggi (± 360.000) dan terdiri dari 4 sub unit).
c. Pembentukan Trio Fosfat
Reaksi berikutnya menyangkut pemotongan glukosa 1,6 – difosfat dengan membentuk dua triosa fosfat: dihidroksi aseton fasfat dan D-gliseraldehida -3- fosfat. Enzim yang mengkatalisis reaksi ini adalah aldolase, yang diisolasi pertama kali oleh “Warburg” kini diketahui banyak ditemukan di alam.
Garapan yang didapat dari oksidasi aldehida menjadi asam karboksilat disimpan
dalam bentuk gugus asil fosfat:1-3 difosfogliserat. Enzim yang berperan adalah
http://htmlimg3.scribdassets.com/g59pz8aa1ls775s/images/6-49d5aa4c4e/000.jpg
gliseraldehida-3-fosfatdehidrogenase. Berat molekul enzim ini 145.000 dan terdiri atas suatu tetramer dengan berat molekul masing-masing sebunit 35.000 dan terikat erat dengan NAD+, jadi seluruhnya ada 4 NAD+.
d. Interkonversi Asam 3-Fosfogliserat Menjadi 2-Fosfogliserat
Fosfogliseril mutase mengkatkalisis interkonvensi dua macam asam Fosfogliserat.
e. Pembentukan Asam Fosfoenol Piruvat
Reaksi berikutnya dikatalisis oleh enzim enolase:
Tetapan setimbang (Kstb) reaksi ini sama dengan 3. hal ini berarti bahwa reaksi diatas berjalan secara reversible. Asam fosfoenol piravat (PED) merupakan molekul berenergi tinggi. Hidrolisis molekul ini menghasilkan ∆G’=-14.800 kalori.
f. Hidrolisis Asam Fosfoenol Piravat Menjadi Piravat
Gugus fosfat dari PEP dipindahkan kepada ADP sehingga terbentuk ATP. Reaksi ini dikatalisis leh enzim piravat kinase dan menghasilkan energi sebesar 61000 kalori.
Taoutomerisasi dari bentuk enol menjadi keto dapat memberikan cukup energi
untuk membentuk ATP.
Berikut adalah bagan glikolisis.
Gambar jalur glikolisis
http://htmlimg2.scribdassets.com/g59pz8aa1ls775s/images/7-d6806467c6/000.jpg
Siklus krebs
Siklus Krebs adalah tahapan selanjutnya dari respirasi seluler. Siklus Krebs adalah reaksi antara asetil ko-A dengan asam oksaloasetat, yang kemudian membentuk asam sitrat. Siklus Krebs disebut juga dengan siklus asam sitrat, karena menggambarkan langkah pertama dari siklus tersebut, yaitu penyatuan asetil ko-A dengan asam oksaloasetat untuk membentuk asam sitrat.
Pertama-tama, asetil ko-A hasil dari reaksi antara (dekarboksilasi oksidatif)
masuk ke dalam siklus dan bergabung dengan asam oksaloasetat membentukasam
sitrat. Setelah "mengantar" asetil masuk ke dalam siklus Krebs, ko-A memisahkan diri
dari asetil dan keluar dari siklus. Kemudian, asam sitrat mengalami pengurangan dan penambahan satu molekul air sehingga terbentuk asam isositrat. Lalu, asam isositrat mengalami oksidasi dengan melepas ion H+, yang kemudian mereduksi NAD+ menjadi NADH, dan melepaskan satu molekul (CO2) dan membentuk asam a-ketoglutarat (baca: asam alpha ketoglutarat). Setelah itu, asam a-ketoglutarat kembali melepaskan satu molekul (CO2), dan teroksidasi dengan melepaskan satu ion H+ yang kembali mereduksi NAD+ menjadi NADH. Selain itu, asam a-ketoglutarat mendapatkan tambahan satu ko-A dan membentuk suksinil ko-A. Setelah terbentuk suksinil ko-A, molekul ko-A kembali meninggalkan siklus, sehingga terbentuk asam suksinat. Pelepasan ko-A dan perubahan suksinil ko-A menjadi asam suksinat menghasilkan cukup energi untuk menggabungkan satu molekul ADP dan satu gugus fosfat anorganik menjadi satu molekulATP. Kemudian, asam suksinat mengalami oksidasi dan melepaskan dua ion H+, yang kemudian diterima oleh FAD dan membentuk FADH2, dan terbentuklah asam fumarat. Satu molekul air kemudian ditambahkan ke asam fumarat dan menyebabkan perubahan susunan (ikatan) substrat pada asam fumarat, karena itu asam fumarat berubah menjadi asam malat. Terakhir, asam malat mengalami oksidasi dan kembali melepaskan satu ion H+, yang kemudian diterima oleh NAD+ dan membentuk NADH, dan asam oksaloasetat kembali terbentuk. Asam oksaloasetat ini kemudian akan kembali mengikat asetil ko-A dan kembali menjalani siklus Krebs.
Dari siklus Krebs ini, dari setiap molekul glukosa akan dihasilkan 2 ATP,6
NADH, 2 FADH2, dan 4 CO2. Selanjutnya, molekul NADH dan FADH2 yang
terbentuk akan menjalani rangkaian terakhir respirasi aerob, yaitu rantai transpor
elektron.
Glikogenesis
Gugus fosfat dan energi yang diperlukan dalam reaksi pembentukan glukosa 6-fosfat dsari glukosa diberikan oleh ATP yang berperan sebagai senyawa kimia berenergi tinggi. Sedang enzim yang mengkatalisnya adalah glukokinase. Selanjutnya, dengan fosfoglukomutase, glukosa 6-fosfat mengalami reaksi isomerasi menjadi glukosa 1-fosfat. Glukosa 1-fosfat bereaksi dengan uridin tri fosfat (UTP) dikatalis oleh glukosa 1-fosfat uridil transferase menghasilkan uridin difosfat glukosa (UDP-glukosa)dan pirofosfat (PPi).
Mekanisme reaksi glikogenesis juga merupakan jalur metabolisme umum untuk biosintesis disakarida dan polisakarida. Dalam berbagai tumbuhan seperti tanaman tebu, disakarida sukrosa dihasilkan dari glukosa dan fruktosa melalui mekanisme biosintesis tersebut. Dalam hal ini UDP-glukosa abereaksi dengan fruktosa 6-fosfat, dikatalis oleh sukrosa fosfat sintase, membentuk sukrosa 6-fosfat yang kemudian dengan enzim sukrosa fosfatase dihidrolisis menjadi sukrosa
Jalur kata bolisme melalui jalur HMP
Jalur HMP sangat penting untuk menghasilkan pentose yang diperlukan unttk sintesis asam nukleat dan nukleotida yang mengandung gugus prostetik, juga sebagai penghasil materi awal untuk sintesis asam amino aromatic dan vitamin,dan juga berperan dalam beberapa reaksi biosintesis.
Pola jalur HMP dapat dilihat pada gambar 1. Disini terlihat adanya penambahan fragmen C2 dan C3 yang diperkirakan diperlukan untuk biosintesis intermediate seperti leusin, isoleusin dan valin.
Jalur HMP mempunyai beberapa macam pola modifikasi dan campuran
diantaranya:
1. Modifikasi campuran EMP dan HMP. Pola ditemui pada kelompok mikroorganisme Hidrolaktat fermentatife basillus. Pola jalur modifikasi ini dapat dilihat pada (gambar ). Dalam jalur modifikasi terjadi perbedaan pada tahap perubahan glukosa -6P. Pada alur glikolisis terlihat pada perubahan glukosa -6-P. Diubah menjadi fruktosa -6P dan selanjutnya mengalami isomerisasi dan dirubah lagi oleh enzim aldolase menjadi gliseraldehida-3P dan dihidroksiaseton P. Sedangkan pada jalur HMPnya terlihat glukosa -6-P diubah menjadi 6- fosfoglukonat dan selanjutnya membentuk ribolus A-5-fosfat. Hal ini sama seperti tahap awal jalur.
2. Modifikasi HMP glioksilat, sebagai berikut:
3. Dapat pula ditemui jalur alternative katabolisme glukosa yaitu bentuk pola interaksi
4. antara glikolisis dan HMP.
Oksidasi piruvat
Dalam jalur ini, piruvat dioksidasi (dekarboksilasi oksidatif) menjadi Asetil-KoA, yang terjadi di dalam mitokondria sel. Reaksi ini dikatalisir oleh berbagai enzim yang berbeda yang bekerja secara berurutan di dalam suatu kompleks multienzim yang berkaitan dengan membran interna mitokondria. Secara kolektif, enzim tersebut diberi nama kompleks piruvat dehidrogenase dan analog dengan kompleks µ-keto glutarat dehidrogenase pada siklus asam sitrat.
Jalur ini merupakan penghubung antara glikolisis dengan siklus Kreb’s. Jalur ini juga merupakan konversi glukosa menjadi asam lemak dan lemak dan sebaliknya dari senyawa non karbohidrat menjadi karbohidrat.
Rangkaian reaksi kimia yang terjadi dalam lintasan oksidasi piruvat adalah sebagai berikut:
1. Dengan adanya TDP (thiamine diphosphate), piruvat didekarboksilasi menjadi derivate hidroksietil tiamin difosfat terikat enzim oleh komponen kompleks enzim piruvat dehidrogenase. Produk sisa yang dihasilkan adalah CO2.
2. Hidroksietil tiamin difosfat akan bertemu dengan lipoamid teroksidasi, suatu kelompok prostetik dihidroksilipoil transasetilase untuk membentuk asetil lipoamid, selanjutnya TDP lepas.
3. Selanjutnya dengan adanya KoA-SH, asetil lipoamid akan diubah menjadi asetil KoA, dengan hasil sampingan berupa lipoamid tereduksi.
4. Siklus ini selesai jika lipoamid tereduksi direoksidasi oleh flavoprotein, yang mengandung FAD, pada kehadiran dihidrolipoil dehidrogenase. Akhirnya flavoprotein tereduksi ini dioksidasi oleh NAD+, yang akhirnya memindahkan ekuivalen pereduksi kepada rantai respirasi.
Piruvat + NAD+ + KoA à Asetil KoA + NADH + H+ + CO2
Siklus asam sitrat
Siklus ini juga sering disebut sebagai siklus Kreb’s dan siklus asam trikarboksilat dan berlangsung di dalam mitokondria. Siklus asam sitrat merupakan jalur bersama oksidasi karbohidrat, lipid dan protein.
Siklus asam sitrat merupakan rangkaian reaksi yang menyebabkan katabolisme asetil KoA, dengan membebaskan sejumlah ekuivalen hidrogen yang pada oksidasi menyebabkan pelepasan dan penangkapan sebagaian besar energi yang tersedia dari bahan baker jaringan, dalam bentuk ATP. Residu asetil ini berada dalam bentuk asetil-KoA (CH3-CO~KoA, asetat aktif), suatu ester koenzim A. Ko-A mengandung vitamin asam pantotenat.
Fungsi utama siklus asam sitrat adalah sebagai lintasan akhir bersama untuk oksidasi karbohidrat, lipid dan protein. Hal ini terjadi karena glukosa, asam lemak dan banyak asam amino dimetabolisir menjadi asetil KoA atau intermediat yang ada dalam siklus tersebut.
Siklus asam sitrat sebagai jalur bersama metabolisme karbohidrat, lipid dan protein
Selama proses oksidasi asetil KoA di dalam siklus, akan terbentuk ekuivalen pereduksi dalam bentuk hidrogen atau elektron sebagai hasil kegiatan enzim dehidrogenase spesifik. Unsur ekuivalen pereduksi ini kemudian memasuki rantai respirasi tempat sejumlah besar ATP dihasilkan dalam proses fosforilasi oksidatif. Pada keadaan tanpa oksigen (anoksia) atau kekurangan oksigen (hipoksia) terjadi hambatan total pada siklus tersebut.
Enzim-enzim siklus asam sitrat terletak di dalam matriks mitokondria, baik dalam bentuk bebas ataupun melekat pada permukaan dalam membran interna mitokondria sehingga memfasilitasi pemindahan unsur ekuivalen pereduksi ke enzim terdekat pada rantai respirasi, yang bertempat di dalam membran interna mitokondria.
Reaksi-reaksi pada siklus asam sitrat diuraikan sebagai berikut:
1. Kondensasi awal asetil KoA dengan oksaloasetat membentuk sitrat, dikatalisir oleh enzim sitrat sintase menyebabkan sintesis ikatan karbon ke karbon di antara atom karbon metil pada asetil KoA dengan atom karbon karbonil pada oksaloasetat. Reaksi kondensasi, yang membentuk sitril KoA, diikuti oleh hidrolisis ikatan tioester KoA yang disertai dengan hilangnya energi bebas dalam bentuk panas dalam jumlah besar, memastikan reaksi tersebut selesai dengan sempurna.
Asetil KoA + Oksaloasetat + H2O à Sitrat + KoA
2. Sitrat dikonversi menjadi isositrat oleh enzim akonitase (akonitat hidratase) yang mengandung besi Fe2+ dalam bentuk protein besi-sulfur (Fe:S). Konversi ini berlangsung dalam 2 tahap, yaitu: dehidrasi menjadi sis-akonitat, yang sebagian di antaranya terikat pada enzim dan rehidrasi menjadi isositrat.
Reaksi tersebut dihambat oleh fluoroasetat yang dalam bentuk fluoroasetil KoA mengadakan kondensasi dengan oksaloasetat untuk membentuk fluorositrat. Senyawa terakhir ini menghambat akonitase sehingga menimbulkan penumpukan sitrat.
3. Isositrat mengalami dehidrogenasi membentuk oksalosuksinat dengan adanya enzim isositrat dehidrogenase. Di antara enzim ini ada yang spesifik NAD+, hanya ditemukan di dalam mitokondria. Dua enzim lainnya bersifat spesifik NADP+ dan masing-masing secara berurutan dijumpai di dalam mitokondria serta sitosol. Oksidasi terkait rantai respirasi terhadap isositrat berlangsung hampir sempurna melalui enzim yang bergantung NAD+.
Isositrat + NAD+ « Oksalosuksinat « µ–ketoglutarat + CO2 + NADH + H+ (terikat enzim)
Kemudian terjadi dekarboksilasi menjadi µ–ketoglutarat yang juga dikatalisir oleh enzim isositrat dehidrogenase. Mn2+ atau Mg2+ merupakan komponen penting reaksi dekarboksilasi. Oksalosuksinat tampaknya akan tetap terikat pada enzim sebagai intermediate dalam keseluruhan reaksi.
4. Selanjutnya µ–ketoglutarat mengalami dekarboksilasi oksidatif melalui cara yang sama dengan dekarboksilasi oksidatif piruvat, dengan kedua substrat berupa asam µ–keto.
µ–ketoglutarat + NAD+ + KoA à Suksinil KoA + CO2 + NADH + H+
Reaksi tersebut yang dikatalisir oleh kompleks µ–ketoglutarat dehidrogenase, juga memerlukan kofaktor yang idenstik dengan kompleks piruvat dehidrogenase, contohnya TDP, lipoat, NAD+, FAD serta KoA, dan menghasilkan pembentukan suksinil KoA (tioester berenergi tinggi). Arsenit menghambat reaksi di atas sehingga menyebabkan penumpukan µ–ketoglutarat.
5. Tahap selanjutnya terjadi perubahan suksinil KoA menjadi suksinat dengan adanya peran enzim suksinat tiokinase (suksinil KoA sintetase).
Suksinil KoA + Pi + ADP « Suksinat + ATP + KoA
Dalam siklus asam sitrat, reaksi ini adalah satu-satunya contoh pembentukan fosfat berenergi tinggi pada tingkatan substrat dan terjadi karena pelepasan energi bebas dari dekarboksilasi oksidatif µ–ketoglutarat cukup memadai untuk menghasilkan ikatan berenergi tinggi disamping pembentukan NADH (setara dengan 3~P.
6. Suksinat dimetabolisir lebih lanjut melalui reaksi dehidrogenasi yang diikuti oleh penambahan air dan kemudian oleh dehidrogenasi lebih lanjut yang menghasilkan kembali oksaloasetat.
Suksinat + FAD « Fumarat + FADH2
Reaksi dehidrogenasi pertama dikatalisir oleh enzim suksinat dehidrogenase yang terikat pada permukaan dalam membrane interna mitokondria, berbeda dengan enzim-enzim lain yang ditemukan pada matriks. Reaksi ini adalah satu-satunya reaksi dehidrogenasi dalam siklus asam sitrat yang melibatkan pemindahan langsung atom hydrogen dari substrat kepada flavoprotein tanpa peran NAD+. Enzim ini mengandung FAD dan protein besi-sulfur (Fe:S). Fumarat terbentuk sebagai hasil dehidrogenasi. Fumarase (fumarat hidratase) mengkatalisir penambahan air pada fumarat untuk menghasilkan malat.
Fumarat + H2O « L-malat
Enzim fumarase juga mengkatalisir penambahan unsure-unsur air kepada ikatan rangkap fumarat dalam konfigurasi trans.
Malat dikonversikan menjadi oksaloasetat dengan katalisator berupa enzim malat dehidrogenase, suatu reaksi yang memerlukan NAD+.
L-Malat + NAD+ « oksaloasetat + NADH + H+
Enzim-enzim dalam siklus asam sitrat, kecuali alfa ketoglutarat dan suksinat dehidrogenase juga ditemukan di luar mitokondria. Meskipun dapat mengkatalisir reaksi serupa, sebagian enzim tersebut, misalnya malat dehidrogenase pada kenyataannya mungkin bukan merupakan protein yang sama seperti enzim mitokondria yang mempunyai nama sama (dengan kata lain enzim tersebut merupakan isoenzim).
Energi yang dihasilkan dalam siklus asam sitrat
Pada proses oksidasi yang dikatalisir enzim dehidrogenase, 3 molekul NADH dan 1 FADH2 akan dihasilkan untuk setiap molekul asetil-KoA yang dikatabolisir dalam siklus asam sitrat. Dalam hal ini sejumlah ekuivalen pereduksi akan dipindahkan ke rantai respirasi dalam membrane interna mitokondria (lihat kembali gambar tentang siklus ini).
Selama melintasi rantai respirasi tersebut, ekuivalen pereduksi NADH menghasilkan 3 ikatan fosfat berenergi tinggi melalui esterifikasi ADP menjadi ATP dalam proses fosforilasi oksidatif. Namun demikian FADH2 hanya menghasilkan 2 ikatan fosfat berenergi tinggi. Fosfat berenergi tinggi selanjutnya akan dihasilkan pada tingkat siklus itu sendiri (pada tingkat substrat) pada saat suksinil KoA diubah menjadi suksinat.
Dengan demikian rincian energi yang dihasilkan dalam siklus asam sitrat adalah:
1. Tiga molekul NADH, menghasilkan : 3 X 3P = 9P
2. Satu molekul FADH2, menghasilkan : 1 x 2P = 2P
3. Pada tingkat substrat = 1P
Jumlah = 12P
Satu siklus Kreb’s akan menghasilkan energi 3P + 3P + 1P + 2P + 3P = 12P.
Kalau kita hubungkan jalur glikolisis, oksidasi piruvat dan siklus Kreb’s, akan dapat kita hitung bahwa 1 mol glukosa jika dibakar sempurna (aerob) akan menghasilkan energi dengan rincian sebagai berikut:
1. Glikolisis : 8P
2. Oksidasi piruvat (2 x 3P) : 6P
3. Siklus Kreb’s (2 x 12P) : 24P
Jumlah : 38P
Glukoneogenesis
Glukoneogenesis terjadi jika sumber energi dari karbohidrat tidak tersedia lagi. Maka tubuh adalah menggunakan lemak sebagai sumber energi. Jika lemak juga tak tersedia, barulah memecah protein untuk energi yang sesungguhnya protein berperan pokok sebagai pembangun tubuh.
Jadi bisa disimpulkan bahwa glukoneogenesis adalah proses pembentukan glukosa dari senyawa-senyawa non karbohidrat, bisa dari lipid maupun protein.
Secara ringkas, jalur glukoneogenesis dari bahan lipid maupun protein dijelaskan sebagai berikut:
1. Lipid terpecah menjadi komponen penyusunnya yaitu asam lemak dan gliserol. Asam lemak dapat dioksidasi menjadi asetil KoA. Selanjutnya asetil KoA masuk dalam siklus Kreb’s. Sementara itu gliserol masuk dalam jalur glikolisis.
2. Untuk protein, asam-asam amino penyusunnya akan masuk ke dalam siklus Kreb’s.
2. Vitamin
Pengertian Vitamin
Pengertian Vitamin adalah sekelompok senyawa organik amina yang sangat penting dan sangat dibutuhkan oleh tubuh, karena vitamin berfungsi untuk membantu pengaturan atau proses kegiatan tubuh (vitamin mempunyai peran sangat penting dalam metabolisme tubuh), karena vitamin tidak dapat dihasilkan oleh tubuh. Jika manusia, hewan dan ataupun makhluk hidup lain tanpa asupan vitamin tidak akan dapat melakukan aktivitas hidup dengan baik, kekurangan vitamin menyebabkan tubuh kita mudah terkena penyakit.
Nama Vitamin sendiri berasal dari gabungan kata bahasa Latin yaitu vita yang artinya “hidup” dan amina (amine) yang mengacu pada suatu gugus organik yang memiliki atom nitrogen (N), karena pada awalnya vitamin dianggap demikian. Kelak diketahui bahwa banyak vitamin yang sama sekali tidak memiliki atom N. Dipandang dari sisi enzimologi (ilmu tentang enzim), vitamin adalah kofaktor dalam reaksi kimia yang dikatalisasi oleh enzim. Pada dasarnya, senyawa vitamin ini digunakan tubuh untuk dapat bertumbuh dan berkembang secara normal
Untuk bisa mendapatkan asupan vitamin tidaklah sulit, bisa dikatakan kebanyakan makanan yang kita konsumsi setiap hari telah mengandung vitamin hanya saja mungkin kita tidak menyadari besar kecilnya kandungan vitamin yang kita konsumsi setiap hari.
Jenis Jenis vitamin
Jenis vitamin berdasarkan kelarutannya ada dua macam, yaitu vitamin yang larut dalam air dan vitamin yang larut dalam lemak. Vitamin yang larut dalam air hanya ada dua yaitu Vitamin B dan C. Sedangkan vitamin A, D, E, dan K, mereka larut dalam lemak.
Cara kerja vitamin yang larut dalam lemak dan yang larut dalam air berbeda.
Vitamin yang larut dalam lemak : Vitamin yang larut dalam lemak akan disimpan di dalam jaringan adiposa (lemak) dan di dalam hati. Vitamin ini kemudian akan dikeluarkan dan diedarkan ke seluruh tubuh saat dibutuhkan. Beberapa jenis vitamin hanya dapat disimpan beberapa hari saja di dalam tubuh, sedangkan jenis vitamin lain dapat bertahan hingga 6 bulan lamanya di dalam tubuh.
vitamin yang larut dalam air : Berbeda dengan vitamin yang larut dalam lemak, jenis vitamin larut dalam air hanya dapat disimpan dalam jumlah sedikit dan biasanya akan segera hilang bersama aliran makanan. Saat suatu bahan pangan dicerna oleh tubuh, vitamin yang terlepas akan masuk ke dalam aliran darah dan beredar ke seluruh bagian tubuh. Apabila tidak dibutuhkan, vitamin ini akan segera dibuang tubuh bersama urin. Oleh karena hal inilah, tubuh membutuhkan asupan vitamin larut air secara terus-menerus.
Sintesis Vitamin A dan mekanisme perombakan
RETINAL
Vitamin A dan β-karoten diserap dari usus halus dan sebagian besar disimpan di dalam hati. Bentuk karoten dalam tumbuhan selain β, adalah α, γ-karoten serta kriptosantin. Setelah dilepaskan dari bahan pangan dalam proses pencernaan, senyawa tersebut diserap oleh usus halus dengan bantuan asam empedu (pembentukan micelle).
Vitamin A dan karoten diserap oleh usus dari micelle secara difusi pasif, kemudian digabungkan dengan kilomikron dan diserap melalui saluran limfatik, kemudian bergabung dengan saluran darah dan ditransportasikan ke hati. Di hati, vitamin A digabungkan dengan asam palmitat dan disimpan dalam bentuk retinil-palmitat. Bila diperlukan oleh sel-sel tubuh, retinil palmitat diikat oleh protein pengikat retinol (PPR) atau retinol-binding protein (RBP), yang disintesis dalam hati. Selanjutnya ditransfer ke protein lain, yaitu “transthyretin” untuk diangkut ke sel-sel jaringan.
Vitamin A yang tidak digunakan oleh sel-sel tubuh diikat oleh protein pengikat retinol seluler (celluler retinol bindig protein), sebagian diangkut ke hati dan bergabung dengan asam empedu, yang selanjutnya diekskresikan ke usus halus, kemudian dikeluarkan dari tubuh melalui feses. Sebagian lagi diangkut ke ginjal dan diekskresikan melalui urine dalam bentuk asam retinoat.
Karoten diserap oleh usus seperti halnya vitamin A, sebagian dikonversi menjadi retinol dan metabolismenya seperti di atas. Sebagian kecil karoten disimpan dalam jaringan adiposa dan yang tidak digunakan oleh tubuh diekskresikan bersama asam empedu melalui feses.
Pada diet nabati, di lumen usus, oleh enzim β- karoten 15,15-deoksigenase, β- karoten tersebut dipecah menjadi retinal (retinaldehid), yang kemudian direduksi menjadi retinol oleh enzim retinaldehid reduktase. Pada diet hewani, retinol ester dihidrolisis oleh esterase dari pankreas, selanjutnya diabsorbsi dalam bentuk retinol, sehingga diperlukan garam empedu.
Proses di atas sangat terkontrol, sehingga tidak dimungkinkan produksi vitamin A dari karoten secara berlebihan. Tidak seluruh karoten dapat dikonversi menjadi vitamin A, sebagian diserap utuh dan masuk ke dalam sirkulasi, hal ini akan digunakan tubuh sebagai antioksidan. Beberapa hal yang menyebabkan karoten gagal dikonversi menjadi vitamin A, antara lain (1) penyerapan tidak sempurna ; (2) konversi tidak 100%, salah satu sebab adalah diantara karoten lolos ke saluran limfe, dan (3) pemecahan yang kurang efisien.
Sintesis Vitamin B dan mekanisme perombakan
Vitamin B merupakan jenis vitamin yang larut dalam air. Vitamin B merupakan kofaktor dalam berbagai reaksi enzimatik yang terdapat di dalam tubuh kita. Vitamin B yang penting bagi nutrisi manusia adalah:

•Tiamin( vitamin B 1 ).
Tiamin tersusun dari pirimidin tersubsitusi yang dihubungkan oleh jembatan metilen dengan tiazol tersubsitusi.

•Riboflavin ( vitamin B2 ).
Riboflavin terdiri atas sebuah cincin isoaloksazin heterosiklik yang terikat dengan gula alcohol,ribitol.Jenis vitamin ini berupa pigmen fluoresen berwarna yang relatif stabil terhadap panas tetapi terurai dengan cahaya yang visible.

•Niasin (asam nikotinat ,nikotinamida, vitamin B3 )
Niasin merupakan nama generik untuk asam nikotinat dan nikotinamida yang berfungsi sebagai sumber vitamin tersebut dalam makanan. Asam nikotinat merupakan derivat asam monokarboksilat dari piridin.

•Asam pantotenat ( vitamin B5 ).
Asam pantotenat dibentuk melalui penggabungan asam pantoat dengan alanin. Asam pantoneat aktif adalah Koenzim A (Ko A ) dan Protein Pembawa Asil (ACP).

• Vitamin B6 ( piridoksin ,pridoksal ,piridoksamin ).
Vitamin B6 terdiri atas derivat piridin yang berhubungan erat yaitu piridoksin, piridoksal serta piridoksamin dan derivat fosfatnya yang bersesuaian.

• Biotin.
Biotin merupakan derivat imidazol yang tersebar luas dalam berbagai makanan alami. Karena sebagian besar kebutuhan manusia akan biotin dipenuhi oleh sintesis dari bakteri intestinal, defisiensi biotin tidak disebabkan oleh defisiensi dietarik biasa tetapi oleh cacat dalam penggunaan. Biotin merupakan koenzim pada berbagai enzim karboksilase.

• Vitamin B12 (kobalamin ).
Vitamin B12 (kobalamin) mempunyai struktur cincin yang kompleks (cincin corrin) dan serupa dengan cincin porfirin, yang pada cincin ini ditambahkan ion kobalt di bagian tengahnya. Vitamin B12 disintesis secara eksklusif oleh mikroorganisme.

• Asam folat.
Nama generiknya adalah folasin . Asam folat ini terdiri dari basa pteridin yang terikat dengan satu molekul masing-masing asam P- aminobenzoat acid (PABA ) dan asam glutamat.
Karena kelarutannya dalam air ,kelebihan vitamin ini akan diekskresikan ke dalam urin dan dengan demikian jarang tertimbun dalam konsentrasi yang toksik.Penyimpanan vitamin B kompleks bersifat terbatas (kecuali kobalamin) sebagai akibatnya vitamin B kompleks harus dikomsumsi secara teratur.
Sintesis Vitamin C dan mekanisme perombakan
Sebagian besar hewan dan tumbuhan yang mampu mensintesis sendiri vitamin C, melalui urutan empat enzim-didorong langkah-langkah, yang mengubah glukosa menjadi vitamin C. Pada reptil dan burung biosintesis yang dilakukan di ginjal.
Di antara hewan-hewan yang telah kehilangan kemampuan untuk mensintesis vitamin C yang simians (khususnya haplorrhini subordo, yang meliputi manusia), babi guinea, sejumlah spesies burung passerine (tetapi tidak semua dari mereka-ada beberapa saran bahwa kemampuan itu kehilangan secara terpisah beberapa kali pada burung), dan banyak (mungkin semua) keluarga besar kelelawar, termasuk serangga besar dan buah-makan keluarga kelelawar. Hewan ini semua kekurangan L-gulonolactone oksidase (Gulo) enzim, yang diperlukan pada langkah terakhir dari sintesis vitamin C, karena mereka memiliki bentuk rusak dari gen untuk enzim (Pseudogene ΨGULO).
Beberapa spesies (termasuk manusia) yang mampu membuat hubungannya dengan tingkat yang lebih rendah yang tersedia dari diet mereka dengan daur ulang teroksidasi vitamin C.
Simians Kebanyakan mengkonsumsi vitamin dalam jumlah 10 sampai 20 kali lebih tinggi dari yang direkomendasikan oleh pemerintah untuk manusia. Perbedaan ini merupakan dasar banyak kontroversi pada saat ini tunjangan diet yang dianjurkan. Ini adalah balas oleh argumen bahwa manusia sangat baik melestarikan makanan vitamin C, dan mampu mempertahankan kadar vitamin C sebanding dengan simians lainnya, pada asupan makanan jauh lebih kecil.
Sebuah kambing dewasa, contoh khas dari hewan-memproduksi vitamin C, akan memproduksi lebih dari 13 g vitamin C per hari dalam kesehatan normal dan biosintesis akan meningkat "banyak kali lipat di bawah tekanan". Trauma atau cedera juga telah ditunjukkan untuk menggunakan sampai jumlah besar vitamin C pada manusia.
Beberapa mikroorganisme seperti ragi Saccharomyces cerevisiae''''telah terbukti untuk dapat mensintesis vitamin C dari gula sederhana.
Sintesis Vitamin D dan mekanisme perombakan
Kekurangan vitamin D dapat mengakibatkan masalah kesehatan yang serius, khususnya karena dapat menghalangi penyerapan kalsium dan fosfor, mengakibatkan ketidak-seimbangan yang kronis dan deteriorasi (penurunan fungsi) tulang. Sinar matahari merupakan sumber alami paling kaya, yang membantu tubuh kita membentuk vitamin D.
Saat kulit Anda terekspos dengan sinar UVB, ia mengubah 7-dehydrocholesterol (yang terdapat pada kulit dan aliran darah Anda) menjadi vitamin D, lalu hati dan ginjal akan mengaktivasikannya dan ia akan mengatur dan membantu penyerapan mineral kalsium dan fosfor pada tubuh. Karena hanya ada sedikit makanan yang secara alami mengandung vitamin D (pilihan terbaiknya adalah ikan salmon, ikan makarel, dan minyak hati ikan cod) kebanyakan dari kita harus bergantung pada sinar matahari atau makanan buatan yang mengandung vitamin D (seperti susu dan sereal) untuk memastikan tubuh kita mendapatkan vitamin D yang cukup.
Sintesis Vitamin K dan mekanisme perombakan

Sebagaimana vitamin yang larut lemak lainnya, penyerapan vitamin K dipengaruhi oleh faktor-faktor yang mempengaruhi penyerapan lemak, antara lain cukup tidaknya sekresi empedu dan pankreas yang diperlukan untuk penyerapan vitamin K. Hanya sekitar 40 -70% vitamin K dalam makanan dapat diserap oleh usus. Setelah diabsorbsi, vitamin K digabungkan dengan kilomikron, diangkut melalui saluran limfatik, kemudian melalui saluran darah ditranportasi ke hati. Sekitar 90% vitamin K yang sampai di hati disimpan dalam bentuk menaquinone. Dari hati, vitamin K disebarkan ke seluruh jaringan tubuh yang memerlukan melalui darah. Saat di darah, vitamin K bergabung dengan VLDL dalam plasma darah.
Setelah disirkulasikan berkali-kali, vitamin K dimetabolisme menjadi komponen larut air dan produk asam empedu terkonjugasi. Selanjutnya, vitamin K diekskresikan melalui urin dan feses. Sekitar 20% dari vitamin K diewkskresikan melalui feses. Pada gangguan penyerapan lemak, ekskresi vitamin K bisa mencapai 70 -80 %.

Tidak ada komentar: