Rabu, 26 Oktober 2011

Karbohidrat Dan Vitamin

TUGAS BIOKKIMIA
“Karbohidrat & Vitamin”
Oleh:
Moh. Mirza Nuryady
101810401048
Biologi – FMIPA
Universitas Jember
2011
1. Karbohidrat
Pengertian Karbohidrat
Karbohidrat adalah senyawa organik terdiri dari unsur karbon, hidrogen, dan oksigen. contoh; glukosa C6H12O6, sukrosa C12H22O11, sellulosa (C6H10O5)n. Rumus umum karbohidrat Cn(H2O)m.
Karena komposisi yang demikian, senyawa ini pernah disangka sebagai hidrat karbon, tetapi sejak 1880, senyawa tersebut bukan hidrat dari karbon. Nama lain dari karbohidrat adalah sakarida, berasal dari bahasa Arab "sakkar" artinya gula. Karbohidrat sederhana mempunyai rasa manis sehingga dikaitkan dengan gula. Melihat struktur molekulnya, karbohidrat lebih tepat didefinisikan sebagai suatu polihidroksialdehid atau polihidroksiketon. Contoh glukosa; adalah suatu polihidroksi aldehid karena mempunyai satu gugus aldehid da 5 gugus hidroksil (OH).
Fungsi primer dari karbohidrat adalah sebagai cadangan energi jangka pendek (gula merupakan sumber energi). Fungsi sekunder dari karbohidrat adalah sebagai cadangan energi jangka menengah (pati untuk tumbuhan dan glikogen untuk hewan dan manusia). Fungsi lainnya adalah sebagai komponen struktural sel.
Metabolisme dan Jalur Metabolisme Karbohidrat
1.GLIKOLISIS : glukosa dimetabolisme menjadi piruvat (aerob)menghasilkan energi (8ATP)atau laktat (anerob)menghasilkan (2 ATP).
selanjutnya Asetil-KoA > siklus Krebs > fosforilasi oksidatif > rantai respirasi > CO2 + H2O (30 ATP)
2. GLIKOGENESIS :proses perubahan glukosa menjadi glikogen. Di Hepar : untuk mempertahankan kadar gula darah, sedangkan di Otot : kepentingan otot sendiri.
3. GLIKOGENOLISIS : proses perubahan glikogen menjadi glukosa.
4. JALUR PENTOSA FOSFAT : hasil ribosa untuk sintesis nukleotida, asam nukleat dan equivalent pereduksi (NADPH) (biosintesis asam lemak dll.)
5. GLUKONEOGENESIS : senyawa non-karbohidrat (piruvat, asam laktat, gliserol, asam amino glukogenik) > glukosa
6. TRIOSA FOSFAT : bagian gliseol dari TAG (lemak)
7. PIRUVAT & SENYAWA ANTARA SIKLUS KREBS : untuk sintesis asam amino > Asetil-KoA > untuk sintesis asam lemak & kolesterol > steroid
Glikolisis
Baik dalam keadaan anaerob maupun aerob, glukosa diubah menjadi privat melalaui serangkaian reaki glikolisis. Dalam keadaan anaerob piuvat dikonversi menjadi asam lakta atau alkohol sedangkan dalam keadaan aerob piravat dikonversi menjadi asetil KoA yang kemudian masuk dalam jalur asam trikarboksilat.
Sedangkan serangkaian reaksi yang terjadi berurutan dalam jalur EMP untuk mengkonversi glukosa menjadi asam privat yang secara garis besar dapat dikelompokkan dalam dua tahap, yaitu tahap perubahan glukosa menjadi triosa fosfat (yang memerlukan energi kemia) dan tahap perubahan triofo fosfat menjadi asam privat sambil melepaskan energi kimia ke lingkungannya.
a. Isomerasi Glukosa 6-Fosfat
Reaksi berikutnya adalah reaksi isomerasasi glukosa menjadi frutkosa 6-faosfat. Reaksi ini dan sebaliknya dikatalisis enzim fosfo glukoisomerase (∆G = + 1400 kalori, pH 7) Kkstb = 0,5.
b. Fosforealasi Frutkosa -6-Fosfat Menjadi Frutkosa 1,6 Difosfat
Pada reaksi tahap ketiga ini dikatalisis oleh fosfo-fruktosakinase.
Tahap ini merupakan tahap reaksi penting untuk pengendalian metabolisme karena enzim ini adalah enzim allosterik yang dapat dipengaruhi oleh beberapa metabolit umum. Kelebihan ATP ataupun asam sitrat dapat menghambat enzim fosfofruktokinase ini. Sebaliknya AMP, ADP, dan Fruktosa 6-P dapat menstimulasi enzim. Enzim ini memerlukan ion Mg2+ sebagai kfaktor dan memiliki berat molekul yang sangat tinggi (± 360.000) dan terdiri dari 4 sub unit).
c. Pembentukan Trio Fosfat
Reaksi berikutnya menyangkut pemotongan glukosa 1,6 – difosfat dengan membentuk dua triosa fosfat: dihidroksi aseton fasfat dan D-gliseraldehida -3- fosfat. Enzim yang mengkatalisis reaksi ini adalah aldolase, yang diisolasi pertama kali oleh “Warburg” kini diketahui banyak ditemukan di alam.
Garapan yang didapat dari oksidasi aldehida menjadi asam karboksilat disimpan
dalam bentuk gugus asil fosfat:1-3 difosfogliserat. Enzim yang berperan adalah
http://htmlimg3.scribdassets.com/g59pz8aa1ls775s/images/6-49d5aa4c4e/000.jpg
gliseraldehida-3-fosfatdehidrogenase. Berat molekul enzim ini 145.000 dan terdiri atas suatu tetramer dengan berat molekul masing-masing sebunit 35.000 dan terikat erat dengan NAD+, jadi seluruhnya ada 4 NAD+.
d. Interkonversi Asam 3-Fosfogliserat Menjadi 2-Fosfogliserat
Fosfogliseril mutase mengkatkalisis interkonvensi dua macam asam Fosfogliserat.
e. Pembentukan Asam Fosfoenol Piruvat
Reaksi berikutnya dikatalisis oleh enzim enolase:
Tetapan setimbang (Kstb) reaksi ini sama dengan 3. hal ini berarti bahwa reaksi diatas berjalan secara reversible. Asam fosfoenol piravat (PED) merupakan molekul berenergi tinggi. Hidrolisis molekul ini menghasilkan ∆G’=-14.800 kalori.
f. Hidrolisis Asam Fosfoenol Piravat Menjadi Piravat
Gugus fosfat dari PEP dipindahkan kepada ADP sehingga terbentuk ATP. Reaksi ini dikatalisis leh enzim piravat kinase dan menghasilkan energi sebesar 61000 kalori.
Taoutomerisasi dari bentuk enol menjadi keto dapat memberikan cukup energi
untuk membentuk ATP.
Berikut adalah bagan glikolisis.
Gambar jalur glikolisis
http://htmlimg2.scribdassets.com/g59pz8aa1ls775s/images/7-d6806467c6/000.jpg
Siklus krebs
Siklus Krebs adalah tahapan selanjutnya dari respirasi seluler. Siklus Krebs adalah reaksi antara asetil ko-A dengan asam oksaloasetat, yang kemudian membentuk asam sitrat. Siklus Krebs disebut juga dengan siklus asam sitrat, karena menggambarkan langkah pertama dari siklus tersebut, yaitu penyatuan asetil ko-A dengan asam oksaloasetat untuk membentuk asam sitrat.
Pertama-tama, asetil ko-A hasil dari reaksi antara (dekarboksilasi oksidatif)
masuk ke dalam siklus dan bergabung dengan asam oksaloasetat membentukasam
sitrat. Setelah "mengantar" asetil masuk ke dalam siklus Krebs, ko-A memisahkan diri
dari asetil dan keluar dari siklus. Kemudian, asam sitrat mengalami pengurangan dan penambahan satu molekul air sehingga terbentuk asam isositrat. Lalu, asam isositrat mengalami oksidasi dengan melepas ion H+, yang kemudian mereduksi NAD+ menjadi NADH, dan melepaskan satu molekul (CO2) dan membentuk asam a-ketoglutarat (baca: asam alpha ketoglutarat). Setelah itu, asam a-ketoglutarat kembali melepaskan satu molekul (CO2), dan teroksidasi dengan melepaskan satu ion H+ yang kembali mereduksi NAD+ menjadi NADH. Selain itu, asam a-ketoglutarat mendapatkan tambahan satu ko-A dan membentuk suksinil ko-A. Setelah terbentuk suksinil ko-A, molekul ko-A kembali meninggalkan siklus, sehingga terbentuk asam suksinat. Pelepasan ko-A dan perubahan suksinil ko-A menjadi asam suksinat menghasilkan cukup energi untuk menggabungkan satu molekul ADP dan satu gugus fosfat anorganik menjadi satu molekulATP. Kemudian, asam suksinat mengalami oksidasi dan melepaskan dua ion H+, yang kemudian diterima oleh FAD dan membentuk FADH2, dan terbentuklah asam fumarat. Satu molekul air kemudian ditambahkan ke asam fumarat dan menyebabkan perubahan susunan (ikatan) substrat pada asam fumarat, karena itu asam fumarat berubah menjadi asam malat. Terakhir, asam malat mengalami oksidasi dan kembali melepaskan satu ion H+, yang kemudian diterima oleh NAD+ dan membentuk NADH, dan asam oksaloasetat kembali terbentuk. Asam oksaloasetat ini kemudian akan kembali mengikat asetil ko-A dan kembali menjalani siklus Krebs.
Dari siklus Krebs ini, dari setiap molekul glukosa akan dihasilkan 2 ATP,6
NADH, 2 FADH2, dan 4 CO2. Selanjutnya, molekul NADH dan FADH2 yang
terbentuk akan menjalani rangkaian terakhir respirasi aerob, yaitu rantai transpor
elektron.
Glikogenesis
Gugus fosfat dan energi yang diperlukan dalam reaksi pembentukan glukosa 6-fosfat dsari glukosa diberikan oleh ATP yang berperan sebagai senyawa kimia berenergi tinggi. Sedang enzim yang mengkatalisnya adalah glukokinase. Selanjutnya, dengan fosfoglukomutase, glukosa 6-fosfat mengalami reaksi isomerasi menjadi glukosa 1-fosfat. Glukosa 1-fosfat bereaksi dengan uridin tri fosfat (UTP) dikatalis oleh glukosa 1-fosfat uridil transferase menghasilkan uridin difosfat glukosa (UDP-glukosa)dan pirofosfat (PPi).
Mekanisme reaksi glikogenesis juga merupakan jalur metabolisme umum untuk biosintesis disakarida dan polisakarida. Dalam berbagai tumbuhan seperti tanaman tebu, disakarida sukrosa dihasilkan dari glukosa dan fruktosa melalui mekanisme biosintesis tersebut. Dalam hal ini UDP-glukosa abereaksi dengan fruktosa 6-fosfat, dikatalis oleh sukrosa fosfat sintase, membentuk sukrosa 6-fosfat yang kemudian dengan enzim sukrosa fosfatase dihidrolisis menjadi sukrosa
Jalur kata bolisme melalui jalur HMP
Jalur HMP sangat penting untuk menghasilkan pentose yang diperlukan unttk sintesis asam nukleat dan nukleotida yang mengandung gugus prostetik, juga sebagai penghasil materi awal untuk sintesis asam amino aromatic dan vitamin,dan juga berperan dalam beberapa reaksi biosintesis.
Pola jalur HMP dapat dilihat pada gambar 1. Disini terlihat adanya penambahan fragmen C2 dan C3 yang diperkirakan diperlukan untuk biosintesis intermediate seperti leusin, isoleusin dan valin.
Jalur HMP mempunyai beberapa macam pola modifikasi dan campuran
diantaranya:
1. Modifikasi campuran EMP dan HMP. Pola ditemui pada kelompok mikroorganisme Hidrolaktat fermentatife basillus. Pola jalur modifikasi ini dapat dilihat pada (gambar ). Dalam jalur modifikasi terjadi perbedaan pada tahap perubahan glukosa -6P. Pada alur glikolisis terlihat pada perubahan glukosa -6-P. Diubah menjadi fruktosa -6P dan selanjutnya mengalami isomerisasi dan dirubah lagi oleh enzim aldolase menjadi gliseraldehida-3P dan dihidroksiaseton P. Sedangkan pada jalur HMPnya terlihat glukosa -6-P diubah menjadi 6- fosfoglukonat dan selanjutnya membentuk ribolus A-5-fosfat. Hal ini sama seperti tahap awal jalur.
2. Modifikasi HMP glioksilat, sebagai berikut:
3. Dapat pula ditemui jalur alternative katabolisme glukosa yaitu bentuk pola interaksi
4. antara glikolisis dan HMP.
Oksidasi piruvat
Dalam jalur ini, piruvat dioksidasi (dekarboksilasi oksidatif) menjadi Asetil-KoA, yang terjadi di dalam mitokondria sel. Reaksi ini dikatalisir oleh berbagai enzim yang berbeda yang bekerja secara berurutan di dalam suatu kompleks multienzim yang berkaitan dengan membran interna mitokondria. Secara kolektif, enzim tersebut diberi nama kompleks piruvat dehidrogenase dan analog dengan kompleks µ-keto glutarat dehidrogenase pada siklus asam sitrat.
Jalur ini merupakan penghubung antara glikolisis dengan siklus Kreb’s. Jalur ini juga merupakan konversi glukosa menjadi asam lemak dan lemak dan sebaliknya dari senyawa non karbohidrat menjadi karbohidrat.
Rangkaian reaksi kimia yang terjadi dalam lintasan oksidasi piruvat adalah sebagai berikut:
1. Dengan adanya TDP (thiamine diphosphate), piruvat didekarboksilasi menjadi derivate hidroksietil tiamin difosfat terikat enzim oleh komponen kompleks enzim piruvat dehidrogenase. Produk sisa yang dihasilkan adalah CO2.
2. Hidroksietil tiamin difosfat akan bertemu dengan lipoamid teroksidasi, suatu kelompok prostetik dihidroksilipoil transasetilase untuk membentuk asetil lipoamid, selanjutnya TDP lepas.
3. Selanjutnya dengan adanya KoA-SH, asetil lipoamid akan diubah menjadi asetil KoA, dengan hasil sampingan berupa lipoamid tereduksi.
4. Siklus ini selesai jika lipoamid tereduksi direoksidasi oleh flavoprotein, yang mengandung FAD, pada kehadiran dihidrolipoil dehidrogenase. Akhirnya flavoprotein tereduksi ini dioksidasi oleh NAD+, yang akhirnya memindahkan ekuivalen pereduksi kepada rantai respirasi.
Piruvat + NAD+ + KoA à Asetil KoA + NADH + H+ + CO2
Siklus asam sitrat
Siklus ini juga sering disebut sebagai siklus Kreb’s dan siklus asam trikarboksilat dan berlangsung di dalam mitokondria. Siklus asam sitrat merupakan jalur bersama oksidasi karbohidrat, lipid dan protein.
Siklus asam sitrat merupakan rangkaian reaksi yang menyebabkan katabolisme asetil KoA, dengan membebaskan sejumlah ekuivalen hidrogen yang pada oksidasi menyebabkan pelepasan dan penangkapan sebagaian besar energi yang tersedia dari bahan baker jaringan, dalam bentuk ATP. Residu asetil ini berada dalam bentuk asetil-KoA (CH3-CO~KoA, asetat aktif), suatu ester koenzim A. Ko-A mengandung vitamin asam pantotenat.
Fungsi utama siklus asam sitrat adalah sebagai lintasan akhir bersama untuk oksidasi karbohidrat, lipid dan protein. Hal ini terjadi karena glukosa, asam lemak dan banyak asam amino dimetabolisir menjadi asetil KoA atau intermediat yang ada dalam siklus tersebut.
Siklus asam sitrat sebagai jalur bersama metabolisme karbohidrat, lipid dan protein
Selama proses oksidasi asetil KoA di dalam siklus, akan terbentuk ekuivalen pereduksi dalam bentuk hidrogen atau elektron sebagai hasil kegiatan enzim dehidrogenase spesifik. Unsur ekuivalen pereduksi ini kemudian memasuki rantai respirasi tempat sejumlah besar ATP dihasilkan dalam proses fosforilasi oksidatif. Pada keadaan tanpa oksigen (anoksia) atau kekurangan oksigen (hipoksia) terjadi hambatan total pada siklus tersebut.
Enzim-enzim siklus asam sitrat terletak di dalam matriks mitokondria, baik dalam bentuk bebas ataupun melekat pada permukaan dalam membran interna mitokondria sehingga memfasilitasi pemindahan unsur ekuivalen pereduksi ke enzim terdekat pada rantai respirasi, yang bertempat di dalam membran interna mitokondria.
Reaksi-reaksi pada siklus asam sitrat diuraikan sebagai berikut:
1. Kondensasi awal asetil KoA dengan oksaloasetat membentuk sitrat, dikatalisir oleh enzim sitrat sintase menyebabkan sintesis ikatan karbon ke karbon di antara atom karbon metil pada asetil KoA dengan atom karbon karbonil pada oksaloasetat. Reaksi kondensasi, yang membentuk sitril KoA, diikuti oleh hidrolisis ikatan tioester KoA yang disertai dengan hilangnya energi bebas dalam bentuk panas dalam jumlah besar, memastikan reaksi tersebut selesai dengan sempurna.
Asetil KoA + Oksaloasetat + H2O à Sitrat + KoA
2. Sitrat dikonversi menjadi isositrat oleh enzim akonitase (akonitat hidratase) yang mengandung besi Fe2+ dalam bentuk protein besi-sulfur (Fe:S). Konversi ini berlangsung dalam 2 tahap, yaitu: dehidrasi menjadi sis-akonitat, yang sebagian di antaranya terikat pada enzim dan rehidrasi menjadi isositrat.
Reaksi tersebut dihambat oleh fluoroasetat yang dalam bentuk fluoroasetil KoA mengadakan kondensasi dengan oksaloasetat untuk membentuk fluorositrat. Senyawa terakhir ini menghambat akonitase sehingga menimbulkan penumpukan sitrat.
3. Isositrat mengalami dehidrogenasi membentuk oksalosuksinat dengan adanya enzim isositrat dehidrogenase. Di antara enzim ini ada yang spesifik NAD+, hanya ditemukan di dalam mitokondria. Dua enzim lainnya bersifat spesifik NADP+ dan masing-masing secara berurutan dijumpai di dalam mitokondria serta sitosol. Oksidasi terkait rantai respirasi terhadap isositrat berlangsung hampir sempurna melalui enzim yang bergantung NAD+.
Isositrat + NAD+ « Oksalosuksinat « µ–ketoglutarat + CO2 + NADH + H+ (terikat enzim)
Kemudian terjadi dekarboksilasi menjadi µ–ketoglutarat yang juga dikatalisir oleh enzim isositrat dehidrogenase. Mn2+ atau Mg2+ merupakan komponen penting reaksi dekarboksilasi. Oksalosuksinat tampaknya akan tetap terikat pada enzim sebagai intermediate dalam keseluruhan reaksi.
4. Selanjutnya µ–ketoglutarat mengalami dekarboksilasi oksidatif melalui cara yang sama dengan dekarboksilasi oksidatif piruvat, dengan kedua substrat berupa asam µ–keto.
µ–ketoglutarat + NAD+ + KoA à Suksinil KoA + CO2 + NADH + H+
Reaksi tersebut yang dikatalisir oleh kompleks µ–ketoglutarat dehidrogenase, juga memerlukan kofaktor yang idenstik dengan kompleks piruvat dehidrogenase, contohnya TDP, lipoat, NAD+, FAD serta KoA, dan menghasilkan pembentukan suksinil KoA (tioester berenergi tinggi). Arsenit menghambat reaksi di atas sehingga menyebabkan penumpukan µ–ketoglutarat.
5. Tahap selanjutnya terjadi perubahan suksinil KoA menjadi suksinat dengan adanya peran enzim suksinat tiokinase (suksinil KoA sintetase).
Suksinil KoA + Pi + ADP « Suksinat + ATP + KoA
Dalam siklus asam sitrat, reaksi ini adalah satu-satunya contoh pembentukan fosfat berenergi tinggi pada tingkatan substrat dan terjadi karena pelepasan energi bebas dari dekarboksilasi oksidatif µ–ketoglutarat cukup memadai untuk menghasilkan ikatan berenergi tinggi disamping pembentukan NADH (setara dengan 3~P.
6. Suksinat dimetabolisir lebih lanjut melalui reaksi dehidrogenasi yang diikuti oleh penambahan air dan kemudian oleh dehidrogenasi lebih lanjut yang menghasilkan kembali oksaloasetat.
Suksinat + FAD « Fumarat + FADH2
Reaksi dehidrogenasi pertama dikatalisir oleh enzim suksinat dehidrogenase yang terikat pada permukaan dalam membrane interna mitokondria, berbeda dengan enzim-enzim lain yang ditemukan pada matriks. Reaksi ini adalah satu-satunya reaksi dehidrogenasi dalam siklus asam sitrat yang melibatkan pemindahan langsung atom hydrogen dari substrat kepada flavoprotein tanpa peran NAD+. Enzim ini mengandung FAD dan protein besi-sulfur (Fe:S). Fumarat terbentuk sebagai hasil dehidrogenasi. Fumarase (fumarat hidratase) mengkatalisir penambahan air pada fumarat untuk menghasilkan malat.
Fumarat + H2O « L-malat
Enzim fumarase juga mengkatalisir penambahan unsure-unsur air kepada ikatan rangkap fumarat dalam konfigurasi trans.
Malat dikonversikan menjadi oksaloasetat dengan katalisator berupa enzim malat dehidrogenase, suatu reaksi yang memerlukan NAD+.
L-Malat + NAD+ « oksaloasetat + NADH + H+
Enzim-enzim dalam siklus asam sitrat, kecuali alfa ketoglutarat dan suksinat dehidrogenase juga ditemukan di luar mitokondria. Meskipun dapat mengkatalisir reaksi serupa, sebagian enzim tersebut, misalnya malat dehidrogenase pada kenyataannya mungkin bukan merupakan protein yang sama seperti enzim mitokondria yang mempunyai nama sama (dengan kata lain enzim tersebut merupakan isoenzim).
Energi yang dihasilkan dalam siklus asam sitrat
Pada proses oksidasi yang dikatalisir enzim dehidrogenase, 3 molekul NADH dan 1 FADH2 akan dihasilkan untuk setiap molekul asetil-KoA yang dikatabolisir dalam siklus asam sitrat. Dalam hal ini sejumlah ekuivalen pereduksi akan dipindahkan ke rantai respirasi dalam membrane interna mitokondria (lihat kembali gambar tentang siklus ini).
Selama melintasi rantai respirasi tersebut, ekuivalen pereduksi NADH menghasilkan 3 ikatan fosfat berenergi tinggi melalui esterifikasi ADP menjadi ATP dalam proses fosforilasi oksidatif. Namun demikian FADH2 hanya menghasilkan 2 ikatan fosfat berenergi tinggi. Fosfat berenergi tinggi selanjutnya akan dihasilkan pada tingkat siklus itu sendiri (pada tingkat substrat) pada saat suksinil KoA diubah menjadi suksinat.
Dengan demikian rincian energi yang dihasilkan dalam siklus asam sitrat adalah:
1. Tiga molekul NADH, menghasilkan : 3 X 3P = 9P
2. Satu molekul FADH2, menghasilkan : 1 x 2P = 2P
3. Pada tingkat substrat = 1P
Jumlah = 12P
Satu siklus Kreb’s akan menghasilkan energi 3P + 3P + 1P + 2P + 3P = 12P.
Kalau kita hubungkan jalur glikolisis, oksidasi piruvat dan siklus Kreb’s, akan dapat kita hitung bahwa 1 mol glukosa jika dibakar sempurna (aerob) akan menghasilkan energi dengan rincian sebagai berikut:
1. Glikolisis : 8P
2. Oksidasi piruvat (2 x 3P) : 6P
3. Siklus Kreb’s (2 x 12P) : 24P
Jumlah : 38P
Glukoneogenesis
Glukoneogenesis terjadi jika sumber energi dari karbohidrat tidak tersedia lagi. Maka tubuh adalah menggunakan lemak sebagai sumber energi. Jika lemak juga tak tersedia, barulah memecah protein untuk energi yang sesungguhnya protein berperan pokok sebagai pembangun tubuh.
Jadi bisa disimpulkan bahwa glukoneogenesis adalah proses pembentukan glukosa dari senyawa-senyawa non karbohidrat, bisa dari lipid maupun protein.
Secara ringkas, jalur glukoneogenesis dari bahan lipid maupun protein dijelaskan sebagai berikut:
1. Lipid terpecah menjadi komponen penyusunnya yaitu asam lemak dan gliserol. Asam lemak dapat dioksidasi menjadi asetil KoA. Selanjutnya asetil KoA masuk dalam siklus Kreb’s. Sementara itu gliserol masuk dalam jalur glikolisis.
2. Untuk protein, asam-asam amino penyusunnya akan masuk ke dalam siklus Kreb’s.
2. Vitamin
Pengertian Vitamin
Pengertian Vitamin adalah sekelompok senyawa organik amina yang sangat penting dan sangat dibutuhkan oleh tubuh, karena vitamin berfungsi untuk membantu pengaturan atau proses kegiatan tubuh (vitamin mempunyai peran sangat penting dalam metabolisme tubuh), karena vitamin tidak dapat dihasilkan oleh tubuh. Jika manusia, hewan dan ataupun makhluk hidup lain tanpa asupan vitamin tidak akan dapat melakukan aktivitas hidup dengan baik, kekurangan vitamin menyebabkan tubuh kita mudah terkena penyakit.
Nama Vitamin sendiri berasal dari gabungan kata bahasa Latin yaitu vita yang artinya “hidup” dan amina (amine) yang mengacu pada suatu gugus organik yang memiliki atom nitrogen (N), karena pada awalnya vitamin dianggap demikian. Kelak diketahui bahwa banyak vitamin yang sama sekali tidak memiliki atom N. Dipandang dari sisi enzimologi (ilmu tentang enzim), vitamin adalah kofaktor dalam reaksi kimia yang dikatalisasi oleh enzim. Pada dasarnya, senyawa vitamin ini digunakan tubuh untuk dapat bertumbuh dan berkembang secara normal
Untuk bisa mendapatkan asupan vitamin tidaklah sulit, bisa dikatakan kebanyakan makanan yang kita konsumsi setiap hari telah mengandung vitamin hanya saja mungkin kita tidak menyadari besar kecilnya kandungan vitamin yang kita konsumsi setiap hari.
Jenis Jenis vitamin
Jenis vitamin berdasarkan kelarutannya ada dua macam, yaitu vitamin yang larut dalam air dan vitamin yang larut dalam lemak. Vitamin yang larut dalam air hanya ada dua yaitu Vitamin B dan C. Sedangkan vitamin A, D, E, dan K, mereka larut dalam lemak.
Cara kerja vitamin yang larut dalam lemak dan yang larut dalam air berbeda.
Vitamin yang larut dalam lemak : Vitamin yang larut dalam lemak akan disimpan di dalam jaringan adiposa (lemak) dan di dalam hati. Vitamin ini kemudian akan dikeluarkan dan diedarkan ke seluruh tubuh saat dibutuhkan. Beberapa jenis vitamin hanya dapat disimpan beberapa hari saja di dalam tubuh, sedangkan jenis vitamin lain dapat bertahan hingga 6 bulan lamanya di dalam tubuh.
vitamin yang larut dalam air : Berbeda dengan vitamin yang larut dalam lemak, jenis vitamin larut dalam air hanya dapat disimpan dalam jumlah sedikit dan biasanya akan segera hilang bersama aliran makanan. Saat suatu bahan pangan dicerna oleh tubuh, vitamin yang terlepas akan masuk ke dalam aliran darah dan beredar ke seluruh bagian tubuh. Apabila tidak dibutuhkan, vitamin ini akan segera dibuang tubuh bersama urin. Oleh karena hal inilah, tubuh membutuhkan asupan vitamin larut air secara terus-menerus.
Sintesis Vitamin A dan mekanisme perombakan
RETINAL
Vitamin A dan β-karoten diserap dari usus halus dan sebagian besar disimpan di dalam hati. Bentuk karoten dalam tumbuhan selain β, adalah α, γ-karoten serta kriptosantin. Setelah dilepaskan dari bahan pangan dalam proses pencernaan, senyawa tersebut diserap oleh usus halus dengan bantuan asam empedu (pembentukan micelle).
Vitamin A dan karoten diserap oleh usus dari micelle secara difusi pasif, kemudian digabungkan dengan kilomikron dan diserap melalui saluran limfatik, kemudian bergabung dengan saluran darah dan ditransportasikan ke hati. Di hati, vitamin A digabungkan dengan asam palmitat dan disimpan dalam bentuk retinil-palmitat. Bila diperlukan oleh sel-sel tubuh, retinil palmitat diikat oleh protein pengikat retinol (PPR) atau retinol-binding protein (RBP), yang disintesis dalam hati. Selanjutnya ditransfer ke protein lain, yaitu “transthyretin” untuk diangkut ke sel-sel jaringan.
Vitamin A yang tidak digunakan oleh sel-sel tubuh diikat oleh protein pengikat retinol seluler (celluler retinol bindig protein), sebagian diangkut ke hati dan bergabung dengan asam empedu, yang selanjutnya diekskresikan ke usus halus, kemudian dikeluarkan dari tubuh melalui feses. Sebagian lagi diangkut ke ginjal dan diekskresikan melalui urine dalam bentuk asam retinoat.
Karoten diserap oleh usus seperti halnya vitamin A, sebagian dikonversi menjadi retinol dan metabolismenya seperti di atas. Sebagian kecil karoten disimpan dalam jaringan adiposa dan yang tidak digunakan oleh tubuh diekskresikan bersama asam empedu melalui feses.
Pada diet nabati, di lumen usus, oleh enzim β- karoten 15,15-deoksigenase, β- karoten tersebut dipecah menjadi retinal (retinaldehid), yang kemudian direduksi menjadi retinol oleh enzim retinaldehid reduktase. Pada diet hewani, retinol ester dihidrolisis oleh esterase dari pankreas, selanjutnya diabsorbsi dalam bentuk retinol, sehingga diperlukan garam empedu.
Proses di atas sangat terkontrol, sehingga tidak dimungkinkan produksi vitamin A dari karoten secara berlebihan. Tidak seluruh karoten dapat dikonversi menjadi vitamin A, sebagian diserap utuh dan masuk ke dalam sirkulasi, hal ini akan digunakan tubuh sebagai antioksidan. Beberapa hal yang menyebabkan karoten gagal dikonversi menjadi vitamin A, antara lain (1) penyerapan tidak sempurna ; (2) konversi tidak 100%, salah satu sebab adalah diantara karoten lolos ke saluran limfe, dan (3) pemecahan yang kurang efisien.
Sintesis Vitamin B dan mekanisme perombakan
Vitamin B merupakan jenis vitamin yang larut dalam air. Vitamin B merupakan kofaktor dalam berbagai reaksi enzimatik yang terdapat di dalam tubuh kita. Vitamin B yang penting bagi nutrisi manusia adalah:

•Tiamin( vitamin B 1 ).
Tiamin tersusun dari pirimidin tersubsitusi yang dihubungkan oleh jembatan metilen dengan tiazol tersubsitusi.

•Riboflavin ( vitamin B2 ).
Riboflavin terdiri atas sebuah cincin isoaloksazin heterosiklik yang terikat dengan gula alcohol,ribitol.Jenis vitamin ini berupa pigmen fluoresen berwarna yang relatif stabil terhadap panas tetapi terurai dengan cahaya yang visible.

•Niasin (asam nikotinat ,nikotinamida, vitamin B3 )
Niasin merupakan nama generik untuk asam nikotinat dan nikotinamida yang berfungsi sebagai sumber vitamin tersebut dalam makanan. Asam nikotinat merupakan derivat asam monokarboksilat dari piridin.

•Asam pantotenat ( vitamin B5 ).
Asam pantotenat dibentuk melalui penggabungan asam pantoat dengan alanin. Asam pantoneat aktif adalah Koenzim A (Ko A ) dan Protein Pembawa Asil (ACP).

• Vitamin B6 ( piridoksin ,pridoksal ,piridoksamin ).
Vitamin B6 terdiri atas derivat piridin yang berhubungan erat yaitu piridoksin, piridoksal serta piridoksamin dan derivat fosfatnya yang bersesuaian.

• Biotin.
Biotin merupakan derivat imidazol yang tersebar luas dalam berbagai makanan alami. Karena sebagian besar kebutuhan manusia akan biotin dipenuhi oleh sintesis dari bakteri intestinal, defisiensi biotin tidak disebabkan oleh defisiensi dietarik biasa tetapi oleh cacat dalam penggunaan. Biotin merupakan koenzim pada berbagai enzim karboksilase.

• Vitamin B12 (kobalamin ).
Vitamin B12 (kobalamin) mempunyai struktur cincin yang kompleks (cincin corrin) dan serupa dengan cincin porfirin, yang pada cincin ini ditambahkan ion kobalt di bagian tengahnya. Vitamin B12 disintesis secara eksklusif oleh mikroorganisme.

• Asam folat.
Nama generiknya adalah folasin . Asam folat ini terdiri dari basa pteridin yang terikat dengan satu molekul masing-masing asam P- aminobenzoat acid (PABA ) dan asam glutamat.
Karena kelarutannya dalam air ,kelebihan vitamin ini akan diekskresikan ke dalam urin dan dengan demikian jarang tertimbun dalam konsentrasi yang toksik.Penyimpanan vitamin B kompleks bersifat terbatas (kecuali kobalamin) sebagai akibatnya vitamin B kompleks harus dikomsumsi secara teratur.
Sintesis Vitamin C dan mekanisme perombakan
Sebagian besar hewan dan tumbuhan yang mampu mensintesis sendiri vitamin C, melalui urutan empat enzim-didorong langkah-langkah, yang mengubah glukosa menjadi vitamin C. Pada reptil dan burung biosintesis yang dilakukan di ginjal.
Di antara hewan-hewan yang telah kehilangan kemampuan untuk mensintesis vitamin C yang simians (khususnya haplorrhini subordo, yang meliputi manusia), babi guinea, sejumlah spesies burung passerine (tetapi tidak semua dari mereka-ada beberapa saran bahwa kemampuan itu kehilangan secara terpisah beberapa kali pada burung), dan banyak (mungkin semua) keluarga besar kelelawar, termasuk serangga besar dan buah-makan keluarga kelelawar. Hewan ini semua kekurangan L-gulonolactone oksidase (Gulo) enzim, yang diperlukan pada langkah terakhir dari sintesis vitamin C, karena mereka memiliki bentuk rusak dari gen untuk enzim (Pseudogene ΨGULO).
Beberapa spesies (termasuk manusia) yang mampu membuat hubungannya dengan tingkat yang lebih rendah yang tersedia dari diet mereka dengan daur ulang teroksidasi vitamin C.
Simians Kebanyakan mengkonsumsi vitamin dalam jumlah 10 sampai 20 kali lebih tinggi dari yang direkomendasikan oleh pemerintah untuk manusia. Perbedaan ini merupakan dasar banyak kontroversi pada saat ini tunjangan diet yang dianjurkan. Ini adalah balas oleh argumen bahwa manusia sangat baik melestarikan makanan vitamin C, dan mampu mempertahankan kadar vitamin C sebanding dengan simians lainnya, pada asupan makanan jauh lebih kecil.
Sebuah kambing dewasa, contoh khas dari hewan-memproduksi vitamin C, akan memproduksi lebih dari 13 g vitamin C per hari dalam kesehatan normal dan biosintesis akan meningkat "banyak kali lipat di bawah tekanan". Trauma atau cedera juga telah ditunjukkan untuk menggunakan sampai jumlah besar vitamin C pada manusia.
Beberapa mikroorganisme seperti ragi Saccharomyces cerevisiae''''telah terbukti untuk dapat mensintesis vitamin C dari gula sederhana.
Sintesis Vitamin D dan mekanisme perombakan
Kekurangan vitamin D dapat mengakibatkan masalah kesehatan yang serius, khususnya karena dapat menghalangi penyerapan kalsium dan fosfor, mengakibatkan ketidak-seimbangan yang kronis dan deteriorasi (penurunan fungsi) tulang. Sinar matahari merupakan sumber alami paling kaya, yang membantu tubuh kita membentuk vitamin D.
Saat kulit Anda terekspos dengan sinar UVB, ia mengubah 7-dehydrocholesterol (yang terdapat pada kulit dan aliran darah Anda) menjadi vitamin D, lalu hati dan ginjal akan mengaktivasikannya dan ia akan mengatur dan membantu penyerapan mineral kalsium dan fosfor pada tubuh. Karena hanya ada sedikit makanan yang secara alami mengandung vitamin D (pilihan terbaiknya adalah ikan salmon, ikan makarel, dan minyak hati ikan cod) kebanyakan dari kita harus bergantung pada sinar matahari atau makanan buatan yang mengandung vitamin D (seperti susu dan sereal) untuk memastikan tubuh kita mendapatkan vitamin D yang cukup.
Sintesis Vitamin K dan mekanisme perombakan

Sebagaimana vitamin yang larut lemak lainnya, penyerapan vitamin K dipengaruhi oleh faktor-faktor yang mempengaruhi penyerapan lemak, antara lain cukup tidaknya sekresi empedu dan pankreas yang diperlukan untuk penyerapan vitamin K. Hanya sekitar 40 -70% vitamin K dalam makanan dapat diserap oleh usus. Setelah diabsorbsi, vitamin K digabungkan dengan kilomikron, diangkut melalui saluran limfatik, kemudian melalui saluran darah ditranportasi ke hati. Sekitar 90% vitamin K yang sampai di hati disimpan dalam bentuk menaquinone. Dari hati, vitamin K disebarkan ke seluruh jaringan tubuh yang memerlukan melalui darah. Saat di darah, vitamin K bergabung dengan VLDL dalam plasma darah.
Setelah disirkulasikan berkali-kali, vitamin K dimetabolisme menjadi komponen larut air dan produk asam empedu terkonjugasi. Selanjutnya, vitamin K diekskresikan melalui urin dan feses. Sekitar 20% dari vitamin K diewkskresikan melalui feses. Pada gangguan penyerapan lemak, ekskresi vitamin K bisa mencapai 70 -80 %.

ASAM AMINO

TUGAS BIOKKIMIA
“ASAM AMINO”
Oleh:
Moh. Mirza Nuryady
101810401048
Biologi – FMIPA
Universitas Jember
2011
1. Pengertian Asam Amino
Asam amino merupakan monomer yang menyusun polimer-polimer pada prtein. Asam amino dapat mengalami proses hidrilisis yang menghasilkan hidrolisat protein. Asam amino adalah senyawa organik yang memiliki gugus fungsional karboksil (-COOH) dan amina (NH2). Dalam biokimia seringkali pengertiannya dipersempit: keduanya terikat pada satu atom karbon (C) yang sama (disebut atom C "alfa" atau α). Gugus karboksil memberikan sifat asam dan gugus amina memberikan sifat basa. Dalam bentuk larutan, asam amino bersifat amfoterik: cenderung menjadi asam pada larutan basa dan menjadi basa pada larutan asam. Perilaku ini terjadi karena asam amino mampu menjadi.
zwitt er-ion. Asam amino termasuk golongan senyawa yang paling banyak dipelajari karena salah satu fungsinya sangat penting dalam organisme, yaitu sebagai penyusun protein. Asam amino adalah komponen utama protein, yang ditemukan dalam semua organisme hidup dan memainkan peranan dalam sel hidup (Holme, dkk., 1993 dan Othmer, K., 1978).
Hidrolisat protein didefinisikan sebagai protein yang mengalami degradasi hidrolitik dengan asam atau basa kuat dengan hasil akhir berupa campuran beberapa hasil. Fungsi hidrolisat protein dapat sebagai penyedap atau sebagai intermedia tes untuk isolasi dan memperoleh asam amino secara individu atau dapat pula untuk pengobatan yaitu sebagai diet untuk penderita pencernaan. Dengan menggunakan teknik kromatografi, berbagai macam asam amino dalam hidrolisat protein dapat diidentifikasi. Kromatografi digunakan untuk memisahkan substansi campuran menjadi komponen-komponennya.Selain teknik ini, ada berbagai cara dalam pengujian terhadap protein yaitu dengan reaksi uji asam amino dan reaksi uji protein. Reaksi uji asam amino sendiri terdiri dari 6 macam uji yaitu: uji millon, uji hopkins cole, uji belerang, uji xantroproteat, dan uji biuret. Sedangkan untuk uji protein, berdasarkan pada pengendapan oleh garam, pengendapan oleh logam dan alkohol. Serta uji koagulasi dan denaturasi protein. Pada uji asam amino terdapat uji bersifat umum dan uji berdasakan jenis asam aminonya. Seperti halnya uji millon bersifat spesifik terhadap tirosin, uji Hopkins cole terhadap triptofan, uji belerang terhadap sistein, uji biuret.
2. Penyusunan, dan Keterkaitan antara Asam Amino-Protein
Asam amino merupakan unit dasar struktur protein. Suatu asam amino terdiri dari gugus amino, gugus karboksil, atom H dan gugus R tertentu yang semuanya terikat pada atom karbon . Atom karbon ini disebut karena bersebelahan dengan gugus karboksil (asam).Gugus R menyatakan rantai samping 1,4
Susunan tetrahedral dari empat gugus yang berbeda terhadap atom karbo
menyebabkan asam amino mempunyai aktivitas optik. Dua bentuk bayangan cermin disebut
isomer L dan isomer D. Protein hanya terdiri dari asam amino L. Sehingga tanda isomer
optik dapat diabaikan. Daalm pembahasan protein selanjutnya asam amino yang dimaksud
adalah isomer L, kecuali bila ada penjelasan.
Umunya pada protein ditemukan 20 jenis rantai samping yang bervariasi dalam
ukuran, bentuk. Contohnya asam amino yang paling sederhana adalah glisin, hanya
mempunyai satu rantai hidrogen sebagai rantai samping. Asam amino alanin, dengan gugus
metil sebagai rantai samping1
Pada protein, gugus karboksil asam amino terikat pada gugus amino asam amino lain dengan ikatan peptida/ ikatan amida secara kovalen membentuk rantai polipeptida Pada pembentukan suatu dipeptida pada dari dua asam amino terjadi pengeluaran satu molekul air.
Ikatan peptida sangat stabil dan hidrolisis kimia memerlukan kondisi yang sangat ekstrim. Dalam tubuh, ikatan peptida diuraikan oleh enzim proteolitik yang disebut protease atau peptidase3
Banyak asam amino berikatan melalui ikatan peptida membentuk rantai polipeptida
yang tidak bercabang. Asam Amino di dalam suatu protein disebut residu asam amino.
Residu asam amino pada salah satu ujung rantai memiliki sebuah gugus amino bebas dan
pada rantai yang lain memiliki gugus karboksil bebas. Berdasarkan kesepakatan, ujung amino
diletakkan pada awal rantai polipeptida.

STRUKTUR PRIMER

Struktur primer suatu protein semata adalah urutan linear asam aminoyang disatukan oleh ikaatn peptida yang mencakup lokasi setiap iakatn disulfida. Tidak terjadi percabangan rantai.
STRUKTUR SKUNDER
Daerah di dalam rantai peptida dapat membentuk struktur reguler, berulang, dan lokal
yang tejadi yang terjadi akibat adanya ikatan hidrogen antara atom-atom ikatan peptida Ini
berhubungan dengan dengan pengaturan kedudukan ruang residu asamamino yang
berdekatan dengan urutan linear. Daerah tersebut yang terkenal dengan struktur skunder


Alpha HELIKS
Pada suatu alpha heliks, terbentuk ikatan hidrogen antara masing-masing atom oksigen
karbonil pada suatu ikatan peptida dengan hidrogen yang melekat ke atom nitrogen amida
pada suatu ikatan peptida 4 residu asam amino di sepanjang rantai polipeptida

Jika tulang punggung polipeptida ini terpilin dengan jumlah yang sama akan terbentuk struktur coil atau heliks (ulir) reguler di mana masing-masing ikatan peptida dihubungkan dengan ikatan hidrogen ke ikatan residu asam amino di depannya dan 4 asam amino dibelakangnya dalam urutan primer.2,3
Berbagai tipe heliks yang terbentuk lewat pemilinan denagn taraf dan arah yang
berbeda digambarkan oleh jumlah (n) residu aminoasil perputaran dan jumlah tonjolan / pitch
(p) atau jarak perputaran yang dibentuk heliks sepanjang sumbunya. Heliks polipeptida yang
terbentuk dari asam amino kiral (chiral ) akan memperlihatkan kiralitas, yaitu helisk tersebut bisa dominan kanan atau kiri. 2


tempimage1


Ikatan Hidrogen dan Kekuatan Van Der Waals Menstabilkan heliks
Mengingat heliks memiliki energi yang paling rendah dan merupakan konformasi
yang paling stabil bagi rantai polipeptida, susunan spasial ini akan terbentuk secara spontan.
Stabilitas heliks terutama terjadi akibat pembentukan ikatan hidrogen dengan jumlah
semaksimal mungkin. Nitrogen peptida bekerja sebagai sebagai donor hidrogen,dan oksigen
karbonil residu yang dalam barisan letaknya nomer empat dari belakang di dalam pengertian
struktur primer bekerja sebagai aseptor hidrogen Interaksi Van der Waals juga memberikan
stabilitas tambahan. Atom yang dikemas kuat pada initi heliks mengadakan kontak van der
Waals antara satu sama lain melintasi sumbu heliks tersebut.

Heliks Dapat Bersifat Amfipatik
Meskipun sering terdapat pada permukaan protein, heliks dapat pula terbenam
seluruhnya atau sebagian dalam bagian interior protein. Heliks yang bersifat amfipatik suatu
kasus yang istimewa dimana residu bergeser antara hidrofobik dan hidrofilik sekitar
setiap tiga atau empat residu, terdapat pula keadaan dimana heliks berhadapan dengan
dengan lingkungan polar atau nonpolar. Heliks yang amfipatik terdapat dalam lipoprotein
plasma samping dalam hormon polipeptida tertentu, dalam bisa (venom), antibiotik,
glikoprotein virus HIV dan protein kinase yang diregulasi oleh kalmodulin.2
Konformasi reguler yang kedua terdaapt pada lembaran yang terlipat struktur atau
pleated sheet. Simbol menunjukkan bahwa struktur ini merupakan struktur reguler kedua
yang dijelaskan.. Istilah lembaran terlipat (pleated sheet) menunjukkan penampakkan stuktur
tersebut kalau dilihat dari pinggir atas.1,2
Berbeda dengan kumparan heliks, sheet terbentuk melalui ikatan hidrogen antara
daerah linier rantai polipeptida . Ikatan hidrogen ini terjadi antara oksigen karboil dari satu
ikatn peptida dan nitogen dari ikatan peptida lainnya. Ikatan hidrogen dapat terbentuk antara
dua ranati polipeptida yang terpisah atau antara anatara dua daerah pada sebuah rantai
tunggal yang melipat sendiri. Pelipatan ini sering melibatkan sering melibatkan 4 struktur
asam amino yang dikenal sebagai turn. 2,3,5
STRUKTUR TERSIER
Struktur tersier menggambarkan pengaturan ruang residu asama mino yang berjauhan
dalam urutan linier dan pola ikatan-ikatan disulfida. 1. Merupakan konformasi tiga dimensi
keseluruhannya. Istilah Struktur tersier mengacu pada hubungan spasial antar unsur struktur
skunder . pelipatan polipeptida pada suatu domain biasanya terjadi tanpa tergantung pada
pelipatan domain lainnya. Stuktur tersier menjelaskan hubungan antara domain ini , cara
dimana pelipatan protein dapat menyatukan asam amino yang letaknya terpisah dalam
pengertian struktur primer, dan ikatan yang menstabilkan konformasi ini.2,4
Bentuk protein globular melibatkan interaksi antara residu asam amino yang mungkin terletak sangat jauh satu sama lain pada urutan primer ranati polipeptida dan melibatkan heliks dan sheet .Interaksi nonkovalen antara rantai sisi residu asam amino penting untuk menstabilkan struktur tersier dan terdiri dari interaksi hidrofobik dan elektrostatik serta ikatan hydrogen 2,3,5
Interaksi hidrofobik sangat penting bagi struktur protein. Asam amino hidrofobik
cenderung berikaatn dibagian dalam protein protein globuler tempat asam amino tidak
berkontak denagn air, sedang asam amino hidrofilik biasanya terletak di permukaan protein tempat asam amino berinteraksi dengan air sekelilingnya.3
STRUKTUR KUARTERNER
Menggambarkan pengaturan subunit protein dalam ruang.1 Protein dengan dua atau
lebih rantai polipeptida yang terikat oleh kekuatan nonkovalenakan memperlihatkan struktur
kovalen. Dalam protein multimerik ini, maing-masing rantai polipeptida disebut protomer
atau subunit. 2 Subunit tersebut disatukan oleh jenis interaksi nonkovalen yang sama yang
berperan dalam stuktur tersier yaitu interaksi elektrostatik dan hidrofobik serta ikatn
hidrogen. Protein yang tersusun dari dua atau empat subunit masing-masing disebut protein dimerik atau tetramerik 2,3,5

3. Proses Dekomposisi dan Biosintesis
Jalur metabolik utama dari asam amino
Jalur metabolik utama dari asam-asam amino terdiri atas pertama, produksi asam amino dari pembongkaran protein tubuh, digesti protein diet serta sintesis asam amino di hati. Kedua, pengambilan nitrogen dari asam amino. Sedangkan ketiga adalah katabolisme asam amino menjadi energi melalui siklus asam serta siklus urea sebagai proses pengolahan hasil sampingan pemecahan asam amino. Keempat adalah sintesis protein dari asam-asam amino.
Jalur-jalur metabolik utama asam amino
Katabolisme asam amino
Asam-asam amino tidak dapat disimpan oleh tubuh. Jika jumlah asam amino berlebihan atau terjadi kekurangan sumber energi lain (karbohidrat dan protein), tubuh akan menggunakan asam amino sebagai sumber energi. Tidak seperti karbohidrat dan lipid, asam amino memerlukan pelepasan gugus amin. Gugus amin ini kemudian dibuang karena bersifat toksik bagi tubuh.
Ada 2 tahap pelepasan gugus amin dari asam amino, yaitu:
1. Transaminasi
Enzim aminotransferase memindahkan amin kepada α-ketoglutarat menghasilkan glutamat atau kepada oksaloasetat menghasilkan aspartat
2. Deaminasi oksidatif
Pelepasan amin dari glutamat menghasilkan ion amonium
Contoh reaksi transaminasi. Perhatikan alanin mengalami transaminasi menjadi glutamat. Pada reaksi ini dibutuhkan enzim alanin aminotransferase.
Glutamat juga dapat memindahkan amin ke rantai karbon lainnya, menghasilkan asam amino baru.
Contoh reaksi deaminasi oksidatif. Perhatikan glutamat mengalami deaminasi menghasilkan amonium (NH4+). Selanjutnya ion amonium masuk ke dalam siklus urea.
Ringkasan skematik mengenai reaksi transaminasi dan deaminasi oksidatif
Setelah mengalami pelepasan gugus amin, asam-asam amino dapat memasuki siklus asam sitrat melalui jalur yang beraneka ragam.
Tempat-tempat masuknya asam amino ke dalam sikulus asam sitrat untuk produksi energi
Gugus-gugus amin dilepaskan menjadi ion amonium (NH4+) yang selanjutnya masuk ke dalam siklus urea di hati. Dalam siklus ini dihasilkan urea yang selanjutnya dibuang melalui ginjal berupa urin. Proses yang terjadi di dalam siklus urea digambarkan terdiri atas beberapa tahap yaitu:
1. Dengan peran enzim karbamoil fosfat sintase I, ion amonium bereaksi dengan CO2 menghasilkan karbamoil fosfat. Dalam raksi ini diperlukan energi dari ATP
2. Dengan peran enzim ornitin transkarbamoilase, karbamoil fosfat bereaksi dengan L-ornitin menghasilkan L-sitrulin dan gugus fosfat dilepaskan
3. Dengan peran enzim argininosuksinat sintase, L-sitrulin bereaksi dengan L-aspartat menghasilkan L-argininosuksinat. Reaksi ini membutuhkan energi dari ATP
4. Dengan peran enzim argininosuksinat liase, L-argininosuksinat dipecah menjadi fumarat dan L-arginin
5. Dengan peran enzim arginase, penambahan H2O terhadap L-arginin akan menghasilkan L-ornitin dan urea.
Tahapan-tahapan proses yang terjadi di dalam siklus urea
Sintesis asam amino
Semua jaringan memiliki kemampuan untuk men-sintesis asam amino non esensial, melakukan remodeling asam amino, serta mengubah rangka karbon non asam amino menjadi asam amino dan turunan lain yang mengandung nitrogen. Tetapi, hati merupakan tempat utama metabolisme nitrogen. Dalam kondisi surplus diet, nitrogen toksik potensial dari asam amino dikeluarkan melalui transaminasi, deaminasi dan pembentukan urea. Rangka karbon umumnya diubah menjadi karbohidrat melalui jalur glukoneogenesis, atau menjadi asam lemak melalui jalur sintesis asam lemak. Berkaitan dengan hal ini, asam amino dikelompokkan menjadi 3 kategori yaitu asam amino glukogenik, ketogenik serta glukogenik dan ketogenik.
Asam amino glukogenik adalah asam-asam amino yang dapat masuk ke jalur produksi piruvat atau intermediat siklus asam sitrat seperti α-ketoglutarat atau oksaloasetat. Semua asam amino ini merupakan prekursor untuk glukosa melalui jalur glukoneogenesis. Semua asam amino kecuali lisin dan leusin mengandung sifat glukogenik. Lisin dan leusin adalah asam amino yang semata-mata ketogenik, yang hanya dapat masuk ke intermediat asetil KoA atau asetoasetil KoA
Sekelompok kecil asam amino yaitu isoleusin, fenilalanin, threonin, triptofan, dan tirosin bersifat glukogenik dan ketogenik. Akhirnya, seharusnya kita kenal bahwa ada 3 kemungkinan penggunaan asam amino. Selama keadaan kelaparan pengurangan rangka karbon digunakan untuk menghasilkan energi, dengan proses oksidasi menjadi CO2 dan H2O.
Dari 20 jenis asam amino, ada yang tidak dapat disintesis oleh tubuh kita sehingga harus ada di dalam makanan yang kita makan. Asam amino ini dinamakan asam amino esensial. Selebihnya adalah asam amino yang dapat disintesis dari asam amino lain. Asam amino ini dinamakan asam amino non-esensial.
Asam amino non-esensial
Alanine, Asparagine, Aspartate, Cysteine, Glutamate, Glutamine, Glycine, Proline, Serine, Tyrosine
Asam amino esensial
Arginine*, Histidine, Isoleucine, Leucine, Lysine, Methionine*, Phenylalanine*, Threonine, Tyrptophan, Valine
Biosintesis glutamat dan aspartat
Glutamat dan aspartat disintesis dari asam α-keto dengan reaksi tranaminasi sederhana. Katalisator reaksi ini adalah enzim glutamat dehidrogenase dan selanjutnya oleh aspartat aminotransferase, AST.
Reaksi biosintesis glutamat
Aspartat juga diturunkan dari asparagin dengan bantuan asparaginase. Peran penting glutamat adalah sebagai donor amino intraseluler utama untuk reaksi transaminasi. Sedangkan aspartat adalah sebagai prekursor ornitin untuk siklus urea.
Biosintesis alanin
Alanin dipindahkan ke sirkulasi oleh berbagai jaringan, tetapi umumnya oleh otot. Alanin dibentuk dari piruvat. Hati mengakumulasi alanin plasma, kebalikan transaminasi yang terjadi di otot dan secara proporsional meningkatkan produksi urea. Alanin dipindahkan dari otot ke hati bersamaan dengan transportasi glukosa dari hati kembali ke otot. Proses ini dinamakan siklus glukosa-alanin. Fitur kunci dari siklus ini adalah bahwa dalam 1 molekul, alanin, jaringan perifer mengekspor piruvat dan amonia ke hati, di mana rangka karbon didaur ulang dan mayoritas nitrogen dieliminir.
Ada 2 jalur utama untuk memproduksi alanin otot yaitu:
1. Secara langsung melalui degradasi protein
2. Melalui transaminasi piruvat dengan bantuan enzim alanin transaminase, ALT (juga dikenal sebagai serum glutamat-piruvat transaminase, SGPT).
Glutamat + piruvat ßàα-ketoglutarat + alanin
Siklus glukosa-alanin
Biosintesis sistein
Sulfur untuk sintesis sistein berasal dari metionin. Kondensasi dari ATP dan metionin dikatalisis oleh enzim metionin adenosiltransfrease menghasilkan S-adenosilmetionin (SAM).
Biosintesis S-adenosilmetionin (SAM)
SAM merupakan precursor untuk sejumlah reaksi transfer metil (misalnya konversi norepinefrin menjadi epinefrin). Akibat dari tranfer metil adalah perubahan SAM menjadi S-adenosilhomosistein. S-adenosilhomosistein selanjutnya berubah menjadi homosistein dan adenosin dengan bantuan enzim adenosilhomosisteinase. Homosistein dapat diubah kembali menjadi metionin oleh metionin sintase.
Reaksi transmetilasi melibatkan SAM sangatlah penting, tetapi dalam kasus ini peran S-adenosilmetionin dalam transmetilasi adalah sekunder untuk produksi homosistein (secara esensial oleh produk dari aktivitas transmetilase). Dalam produksi SAM, semua fosfat dari ATP hilang: 1 sebagai Pi dan 2 sebagai Ppi. Adenosin diubah menjadi metionin bukan AMP.
Dalam sintesis sistein, homosistein berkondensasi dengan serin menghasilkan sistationin dengan bantuan enzim sistationase. Selanjutnya dengan bantuan enzim sistationin liase sistationin diubah menjadi sistein dan α-ketobutirat. Gabungan dari 2 reaksi terakhir ini dikenal sebagai trans-sulfurasi.
Peran metionin dalam sintesis sistein
Biosintesis tirosin
Tirosin diproduksi di dalam sel dengan hidroksilasi fenilalanin. Setengah dari fenilalanin dibutuhkan untuk memproduksi tirosin. Jika diet kita kaya tirosin, hal ini akan mengurangi kebutuhan fenilalanin sampai dengan 50%.
Fenilalanin hidroksilase adalah campuran fungsi oksigenase: 1 atom oksigen digabungkan ke air dan lainnya ke gugus hidroksil dari tirosin. Reduktan yang dihasilkan adalah tetrahidrofolat kofaktor tetrahidrobiopterin, yang dipertahankan dalam status tereduksi oleh NADH-dependent enzyme dihydropteridine reductase (DHPR).
Biosintesis tirosin dari fenilalanin
Biosintesis ornitin dan prolin
Glutamat adalah prekursor ornitin dan prolin. Dengan glutamat semialdehid menjadi intermediat titik cabang menjadi satu dari 2 produk atau lainnya. Ornitin bukan salah satu dari 20 asam amino yang digunakan untuk sintesis protein. Ornitin memainkan peran signifikan sebagai akseptor karbamoil fosfat dalam siklus urea. Ornitin memiliki peran penting tambahan sebagai prekursor untuk sintesis poliamin. Produksi ornitin dari glutamat penting ketika diet arginin sebagai sumber lain untuk ornitin terbatas.
Penggunaan glutamat semialdehid tergantung kepada kondisi seluler. Produksi ornitin dari semialdehid melalui reaksi glutamat-dependen transaminasi. ketika konsentrasi arginin meningkat, ornitin didapatkan dari siklus urea ditambah dari glutamat semialdehid yang menghambat reaksi aminotransferase. Hasilnya adalah akumulasi semialdehid. Semialdehid didaur secara spontan menjadi Δ1pyrroline-5-carboxylate yang kemudian direduksi menjadi prolin oleh NADPH-dependent reductase.
Biosintesis serin
Jalur utama untuk serin dimulai dari intermediat glikolitik 3-fosfogliserat. NADH-linked dehidrogenase mengubah 3-fosfogliserat menjadi sebuah asam keto yaitu 3-fosfopiruvat, sesuai untuk transaminasi subsekuen. Aktivitas aminotransferase dengan glutamat sebagai donor menghasilkan 3-fosfoserin, yang diubah menjadi serin oleh fosfoserin fosfatase.
Biosintesis glisin
Jalur utama untuk glisin adalah 1 tahap reaksi yang dikatalisis oleh serin hidroksimetiltransferase. Reaksi ini melibatkan transfer gugus hidroksimetil dari serin untuk kofaktor tetrahidrofolat (THF), menghasilkan glisin dan N5, N10-metilen-THF.
Biosintesis aspartat, asparagin, glutamat dan glutamin
Glutamat disintesis dengan aminasi reduktif α-ketoglutarat yang dikatalisis oleh glutamat dehidrogenase yang merupakan reaksi nitrogen-fixing. Glutamat juga dihasilkan oleh reaksi aminotranferase, yang dalam hal ini nitrogen amino diberikan oleh sejumlah asam amino lain. Sehingga, glutamat merupakan kolektor umum nitrogen amino.
Aspartat dibentuk dalam reaksi transaminasi yang dikatalisis oleh aspartat transaminase, AST. Reaksi ini menggunakan analog asam α-keto aspartat, oksaloasetat, dan glutamat sebagai donor amino. Aspartat juga dapat dibentuk dengan deaminasi asparagin yang dikatalisis oleh asparaginase.
Asparagin sintetase dan glutamin sintetase mengkatalisis produksi asparagin dan glutamin dari asam α-amino yang sesuai. Glutamin dihasilkan dari glutamat dengan inkorporasi langsung amonia dan ini merupakan reaksi fixing nitrogen lain. Tetapi asparagin terbentuk oleh reaksi amidotransferase.